The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design

نویسندگان

  • Yun Ni
  • Xia Wang
  • Wei Tao
  • Si-Cong Zhu
  • Kai-Lun Yao
چکیده

By performing first-principle quantum transport calculations, we studied the electronic and transport properties of zigzag α-graphyne nanoribbons in different magnetic configurations. We designed the device based on zigzag α-graphyne nanoribbon and studied the spin-dependent transport properties, whose current-voltage curves show obvious spin-polarization and conductance plateaus. The interesting transport behaviours can be explained by the transport spectra under different magnetic configurations, which basically depends on the symmetry matching of the electrodes' bandstructures. Simultaneously, spin Seebeck effect is also found in the device. Thus, according to the transport behaviours, zigzag α-graphyne nanoribbons can be used as a dual spin filter diode, a molecule signal converter and a spin caloritronics device, which indicates that α-graphyne is a promising candidate for the future application in spintronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic electronic and transport properties of graphyne sheets and nanoribbons.

Graphyne, a two-dimensional carbon allotrope like graphene but containing doubly and triply bonded carbon atoms, has been proven to possess amazing electronic properties as graphene. Although the electronic, optical, and mechanical properties of graphyne and graphyne nanoribbons (NRs) have been previously studied, their electron transport behaviors have not been understood. Here we report a com...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Giant magnetoresistance and spin Seebeck coefficient in zigzag α-graphyne nanoribbons.

We investigate the spin-dependent electric and thermoelectric properties of ferromagnetic zigzag α-graphyne nanoribbons (ZαGNRs) using density-functional theory combined with non-equilibrium Green's function method. A giant magnetoresistance is obtained in the pristine even-width ZαGNRs and can be as high as 10(6)%. However, for the doped systems, a large magnetoresistance behavior may appear i...

متن کامل

C3nr03167e 9264..9276

Graphyne, a two-dimensional carbon allotrope like graphene but containingdoubly and triply bonded carbon atoms, has been proven to possess amazing electronic properties as graphene. Although the electronic, optical, and mechanical properties of graphyne and graphyne nanoribbons (NRs) have been previously studied, their electron transport behaviors have not been understood. Here we report a comp...

متن کامل

The Band-Gap Modulation of Graphyne Nanoribbons by Edge Quantum Entrapment

Using ab initio calculation coupled with the bond-order-length-strength (BOLS) approximation, we investigate the configurations and electronic properties of (α, β)-graphyne nanoribbons (GYNRs) with armchair (AGYNRs) and zigzag (ZGYNRs) edges. Our investigation shows that the armchair-edged β-GYNRs and all α-GYNRs are semiconductors with suitable band-gaps, and that their band-gaps increase as t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016